This documentation is automatically generated by online-judge-tools/verification-helper
#include "src/graph/dijkstra.hpp"
#pragma once
#include <bits/stdc++.h>
#include <limits>
using namespace std;
#include "./template.hpp"
template <typename T> struct Dijkstra {
private:
int n;
int start;
Graph<T> graph;
vector<T> dist;
using P = pair<T, int>;
priority_queue<P, vector<P>, greater<P>> que;
T MAX = numeric_limits<T>::max();
public:
Dijkstra(int n, int start) : n(n), start(start), graph(n) {
dist.resize(n, MAX);
dist[start] = 0;
que.push(P(0, start));
}
void add_edge(int start, int to, T cost) {
graph[start].emplace_back(start, to, cost);
}
void build() {
while (!que.empty()) {
P p = que.top();
que.pop();
int current = p.second;
if (dist[current] < p.first) {
continue;
}
for (auto &e : graph[current]) {
if (dist[e.to] > dist[current] + e.cost) {
dist[e.to] = dist[current] + e.cost;
que.push(P(dist[e.to], e.to));
}
}
}
}
T shortest_path_value(int t) { return dist[t]; }
bool is_unreachable(int t) { return dist[t] == MAX; }
};
#line 2 "src/graph/dijkstra.hpp"
#include <bits/stdc++.h>
#line 5 "src/graph/dijkstra.hpp"
using namespace std;
#line 2 "src/graph/template.hpp"
#line 4 "src/graph/template.hpp"
using namespace std;
template <typename T = long long> struct Edge {
int from, to;
T cost;
Edge(int from, int to, T cost = 1) : from(from), to(to), cost(cost) {}
};
template <typename T = long long> using Edges = vector<Edge<T>>;
template <typename T = long long> using Graph = vector<Edges<T>>;
template <typename T = long long> using Matrix = vector<vector<T>>;
#line 8 "src/graph/dijkstra.hpp"
template <typename T> struct Dijkstra {
private:
int n;
int start;
Graph<T> graph;
vector<T> dist;
using P = pair<T, int>;
priority_queue<P, vector<P>, greater<P>> que;
T MAX = numeric_limits<T>::max();
public:
Dijkstra(int n, int start) : n(n), start(start), graph(n) {
dist.resize(n, MAX);
dist[start] = 0;
que.push(P(0, start));
}
void add_edge(int start, int to, T cost) {
graph[start].emplace_back(start, to, cost);
}
void build() {
while (!que.empty()) {
P p = que.top();
que.pop();
int current = p.second;
if (dist[current] < p.first) {
continue;
}
for (auto &e : graph[current]) {
if (dist[e.to] > dist[current] + e.cost) {
dist[e.to] = dist[current] + e.cost;
que.push(P(dist[e.to], e.to));
}
}
}
}
T shortest_path_value(int t) { return dist[t]; }
bool is_unreachable(int t) { return dist[t] == MAX; }
};