This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub gtnao/algorithm
#define PROBLEM \ "https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/1/GRL_1_A" #include <bits/stdc++.h> using namespace std; #include "../../src/graph/dijkstra.hpp" int main() { int V, E, r; cin >> V >> E >> r; Dijkstra<int> dijkstra(V, r); for (int i = 0; i < E; ++i) { int s, t, d; cin >> s >> t >> d; dijkstra.add_edge(s, t, d); } dijkstra.build(); for (int i = 0; i < V; ++i) { if (dijkstra.is_unreachable(i)) { cout << "INF" << endl; } else { cout << dijkstra.shortest_path_value(i) << endl; } } return 0; }
#line 1 "test/aoj/grl_1_a.test.cpp" #define PROBLEM \ "https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/1/GRL_1_A" #include <bits/stdc++.h> using namespace std; #line 2 "src/graph/dijkstra.hpp" #line 5 "src/graph/dijkstra.hpp" using namespace std; #line 2 "src/graph/template.hpp" #line 4 "src/graph/template.hpp" using namespace std; template <typename T = long long> struct Edge { int from, to; T cost; Edge(int from, int to, T cost = 1) : from(from), to(to), cost(cost) {} }; template <typename T = long long> using Edges = vector<Edge<T>>; template <typename T = long long> using Graph = vector<Edges<T>>; template <typename T = long long> using Matrix = vector<vector<T>>; #line 8 "src/graph/dijkstra.hpp" template <typename T> struct Dijkstra { private: int n; int start; Graph<T> graph; vector<T> dist; using P = pair<T, int>; priority_queue<P, vector<P>, greater<P>> que; T MAX = numeric_limits<T>::max(); public: Dijkstra(int n, int start) : n(n), start(start), graph(n) { dist.resize(n, MAX); dist[start] = 0; que.push(P(0, start)); } void add_edge(int start, int to, T cost) { graph[start].emplace_back(start, to, cost); } void build() { while (!que.empty()) { P p = que.top(); que.pop(); int current = p.second; if (dist[current] < p.first) { continue; } for (auto &e : graph[current]) { if (dist[e.to] > dist[current] + e.cost) { dist[e.to] = dist[current] + e.cost; que.push(P(dist[e.to], e.to)); } } } } T shortest_path_value(int t) { return dist[t]; } bool is_unreachable(int t) { return dist[t] == MAX; } }; #line 8 "test/aoj/grl_1_a.test.cpp" int main() { int V, E, r; cin >> V >> E >> r; Dijkstra<int> dijkstra(V, r); for (int i = 0; i < E; ++i) { int s, t, d; cin >> s >> t >> d; dijkstra.add_edge(s, t, d); } dijkstra.build(); for (int i = 0; i < V; ++i) { if (dijkstra.is_unreachable(i)) { cout << "INF" << endl; } else { cout << dijkstra.shortest_path_value(i) << endl; } } return 0; }