This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM \
"https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/5/GRL_6_A"
#include <bits/stdc++.h>
using namespace std;
#include "../../src/flow/ford_fulkerson.hpp"
int main() {
int V, E;
cin >> V >> E;
FordFulkerson<int> ff(V);
for (int i = 0; i < E; i++) {
int u, v, c;
cin >> u >> v >> c;
ff.add_edge(u, v, c);
}
cout << ff.max_flow(0, V - 1) << endl;
return 0;
}
#line 1 "test/aoj/grl_6_a.test.cpp"
#define PROBLEM \
"https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/5/GRL_6_A"
#include <bits/stdc++.h>
using namespace std;
#line 2 "src/flow/ford_fulkerson.hpp"
#line 4 "src/flow/ford_fulkerson.hpp"
using namespace std;
template <typename T> struct FordFulkerson {
private:
struct Edge {
int from;
int to;
T cap;
int rev;
bool is_rev;
};
T INF = numeric_limits<T>::max();
int n;
vector<vector<Edge>> graph;
vector<bool> used;
public:
FordFulkerson(int n) : n(n), graph(n), used(n) {}
void add_edge(int from, int to, T cap) {
graph[from].emplace_back(
(Edge){from, to, cap, (int)graph[to].size(), false});
graph[to].emplace_back(
(Edge){to, from, 0, (int)graph[from].size() - 1, true});
}
T max_flow(int s, int t) {
T ret = 0;
while (true) {
used.assign(n, false);
T flow = dfs(s, t, INF);
if (flow == 0) {
return ret;
}
ret += flow;
}
return ret;
}
private:
T dfs(int v, int t, T f) {
if (v == t) {
return f;
}
used[v] = true;
for (auto &e : graph[v]) {
if (!used[e.to] && e.cap > 0) {
T d = dfs(e.to, t, min(f, e.cap));
if (d > 0) {
e.cap -= d;
graph[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
};
#line 8 "test/aoj/grl_6_a.test.cpp"
int main() {
int V, E;
cin >> V >> E;
FordFulkerson<int> ff(V);
for (int i = 0; i < E; i++) {
int u, v, c;
cin >> u >> v >> c;
ff.add_edge(u, v, c);
}
cout << ff.max_flow(0, V - 1) << endl;
return 0;
}